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I. INTRODUCTION

In prediction, data generated by some stochastic process are deduced from

past observations. Given a well-known such process, the optimal mean-squared

predictor is the conditional mean, which is generally a complicated function

of the past observations. Linear prediction operations are then widely used,

due to their simplicity, and the classical theory of linear prediction for

weakly stationary discrete-time processes is mainly due to Wiener, [19], and

Kolmogorov, [111,[12]. However, such linear operations are notoriously un-

stable in the presence of contaminations due to data outliers, (see Huder, (91,

and Hampel, [7]), while the occurence of such outliers is a phenomenon frequently

observed in practice. In this paper, we develop and analyze a sequence of

outlier resistant prediction operations. Our presentation combines the

theories of saddle point games and qualitative robustness, (for the latter see

Boente et al, [I], Cox [2], Hampel, [7], Papantoni-Kazakos and Gray [131, and

Papantoni-Kazakos, [14], 'l5], [161,). Similar approach was used by Tsaknakis, %

[181, for the development of outlier resistant filtering and smoothing operations.

Considerable effort has been dedicated to the development of minimax

linear prodictors, in cases when the spectral density of the process is not well

defined, but is instead a member of some compact class, (see Franke, 131, Franke

and Poor, [4], Hosoya, (81, Kassam and Poor, [101, and Tsaknakis et al, [17J).

Such predictors are highly sensitive to data outliers, however.

In this paper, one-step prediction is considered, and the organization is

as follows: In section II, we present formalization of the problem and we de- N

fine important performance criteria for outlier resistant operation:i. Tn section I
III, we develop outlier resistant prediction operations and we study their asymptotic

performance. In section IV, we examine the special case of first order autoregressive

nominal processes. In section V, we draw some conrlusions.

~. w v.-~ E *~* - , . • . ,
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II. PRELIMIMARIES

Let R be the real line, and let B be the usual Borel a-field on R. Let R

be the one-sided sequence space, and let C be the Borel a-field on R that is

generated by the product topology on R . We consider a real-valued discrete-

time process, {X, l<n<-), whose measure j0 is known and is defined on 5 . We

name {Xa, l<n<-) the nominal process, and we denote by {x n , l<n<o-} data realiza-
n n-1

tions generated by it. Let Xn Xn 1  ) denote the optimal one-step mean-

n-l A
squared prediction operation, given the sequence realization x - (x -lt, C<n-l},

when (x, l<n<-} is generated by the nominal process. Then if gn g nx 1)n n-

denotes some scalar real-valued function on the sequence x -1 we have:

e n(IIo•) inf e n' g) (1)
nn

n-I n-l
n-(x 1 E (XIx (2)nl ) = nia

where E { I denotes expectation with respect to the measure po, where

0
Xl a {XI l<L<n), and where,

n (o'g n)  {[X-(n- l)1
n o gK 1  ) n l 2 (3

0

The expression in (3) is called the one-step prediction error induced by

g at o. Let Ln denote the class of all the scalar real-valued linear functions

n L L n-l
defined on Rn .  Let then (x be such that:

en(j%, T),, - inf en(o,gn)L  (4),.,
nn n1

Then, x is called the optimal linear one-strp mean squared predictor at

S , given the sequence realization x 1 ,and generally,

2 q

.e..0 '~ V'* .. . . . 'V. -
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no n - n on

^ n-i A L n-i
If the measure Po is Gaussian, then xn(x 1  ) X n (X1  ), Yn, and (5) is

then satisfied with equality for all n. If is non Gaussian, then (5) is

generally a strict inequality.

The above summary corresponds to parametric one-step prediction; that is,

it corresponds to the case where the measure Io that generates the data sequences

is known. In this paper, we are concerned with the outlier model. Then, the

observation process {Yn' l<n<-} is generated by three mutually independent processes,

the nominal process {XnIl<n<m} and two i.i.d. processes IV n l<n<-'} and

(Z_, l<n<-}, as follows:

Yn = (l-Vn)Xn + Vn Z , n-l,2.... (6)

; where the common distribution of the variables Z, l<n, is unknown, and

where IV, l<n < )c is a binary process. In particular, for some given E: O<C<l,n
•  

-

the latter process is such that:

P(Vk = 0) - 1-C

(7)

P(Vk w 1) - C

In the outlier model in (6)•(Z, l<n<-} is called the contaminating process,

and {Vn • l<n<}_ determines the contamination law. In the presence of the latter V

model, the objective is predicition of the nominal datum x n given the observation k.

n-i
sequence y , for all n, and the problem formalization is then clenrly non-

parametric. Let P denote the measure of the observation process, and let ig }<n<

denote a sequence of one-step predictors, where g gn(Yn -1 ) Let us then define,

n n2en(P~g) E QU(Xn-gn(Y1-) _ (8)

3 q
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In (8), e n(P.,gn ) is the mean-squared error induced by the predictor gn when the

measure of the observation process {Y, l<n<-) is V, and where X is generatedn -- n

by the nominal process whose measure is U0. Clearly, en (o,gn ) is then as in (3),

and it represents the mean-squared performance of the predictor gn at the nominal

measure po, (that is, when outliers are absent).

Our objective is to design a sequence {gnIl<n<- of predictors whose mean-
the bseratio proess{Yn'l<__< }.Th n stblity orredipos wos ean-aiv

squared performance is stable in the presence of variations in the measure V of

the observation process {Y, no<n<-). This stability corresponds to qualitative

robustness, and is defined as follows:

Given n>O, there exists 6>0, such that:

11 (IiO,P) <6 implies le n(io,g) - en (,gn)I<n ; Vn

In the above definition, H0 denotes Prohorov distance with an appropriate
P

distortion measure p on data sequences, and sequences {gn) of operations that
n

satisfy this stability are called qualitatively robust at the measure Vo. As

found first in [13], and later in [1], [14], and [16], for the sequence {g n to

be qualitatively robust, pointwise continuity and asymptotic continuity in

conjuction with boundness. are sufficient. In particular, it is sufficient that

gn is bounded for all n, and:

n(A) Given finite n, given T>O, given x1 , there exists 6>0, such that,

n n~ n 1 n n -y11<6,Y I n(x IY? n- E Ix i-Yil<6 implies gn+l(x .)-gn+l 1Ivol

(B) Given 0 stationary, given C>0, n>0, there exist integers no m,

some 6>0, and for each n>n some An Rn with o (A n)>-n, such that for
0 0

each xnc n and yn such that inf (a: #[i : y( m - l ' Yin )><n<6

it is implied that Igl(Xn)-gnl<,.

4

F 'r o 'r ' .0 0
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Given a sequence fgn} of predictors which is qualitatively robust at the

nominal measure V0 , its important quantitative performance criteria are: (1) Its

asymptotic mean-squared performance at the nominal measure, lim sup en(Vo,gn)

(2) Its breakdown point. (3) Its influence function. The breakdown point and

the influence function represent measures of resistance to outliers, and their Z

definitions are given below.

Consider the model in (6), and let then {Z } be a deterministic process

with amplitude w; that is, P(Z -w)=l. Let then , be the measure of the
n e,w

observation process {Y.}. Given a sequence {gn of predictors, we then define:
a

Influence Function of the sequence (g n:

A e(1i ,,g) -e(IJ ,g) S
I(w) lim (9)

; where,

e(p,g) = lim sup en(p,g) (10)

Breakdown point of the sequence {gnI:

2
E sup { E: e(P ,g) < lim sup E U tX (11)
g - 1 n

n
-  

o .

where e(p,g) is defined as in (10).

We note that the breakdown point is the maximum frequency of independent,

infinite-amplitude outliers that the prediction sequence can tolerate asymptotically,

without becoming useless, (that is, before the observation sequences provide no

information about the next process datum). The influence function represents

the slope of the function e(Pwg) - e(o ,g) F (W), at the E=0 point. F Mw)
C,w, o E,g C~

corresponds to the asymptotic mean-squared error increase induced by the prediction

sequence {gn), when from absence of outliers the environment shifts to e-frequency

and w-amplitude outlier occurence.

5

N
N '.-
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The outlier model in (6) can be generalized to i.i.d. sequences of m-size

blocks of outliers, as follows:

km km km
(k-l)m+l (-Vk)X(k-l)m+l + Z(k-)ml ; k=1,2,... (12)

; where the sequence {V I is as in (7), and where the vector random variables

{Z km l} are i.i.d, with unknown distribution. Let Pw denote the measure

of the observation process (Yn}, when the model in (12) is present, and when

P(Z -w)=!. Then, given a sequence {gn} of predictors, and defining e(p,g) as
nn

in (10), the breakdown point, e M and the influence function, I (w), that
g gymn

correspond to the outlier model in (12) are defined as follows:

* A X2
g = sup { C: e(J ,g) < lim sup E {x n} (13)
9, C OD,m - _ 10n

I (w) lim e 'w'm - (14)
gym C_

III. OUTLIER RESISTANT PREDICTION OPERATIONS

We consider a stationary, zero mean, real-valued process {X ,l<n<- }, with
n

measure polo and E {X2 } = 02 <00. We also consider the outlier model in (12) for
110 n

the observation process {Y ,l<n<-). We concentrate on the design of qualitatively

robust and outlier resistant sequences {g I of one-step predictors for the process
n

{Xn ,l<n<-o}. Our methodology involves two steps: (1) A saddle-point game formal-

ization and solution for the predictors g : 2<n<m+l. (2) A qualitatively robust

generalization of the solutions in step 1, for the predictors g : n>m+l.

In the sequel, we will assume that both the nominal and the contaminating

n aprocesses are absolutely continuous. We will then denote by f (xl) the density

function induced by the nominal process at the vector point x1; we will denote

by f(yn) the density function induced by the observation process at the vector
n ". %,

point y,. We not,! that then, for n : 2<n<m+l, the class, F of density functions

induced by the model in (12) is as follows: ,

6
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F -{f:f(yl )-(-)f (Yn- > O;V Yl C , (y )dy =
n 01 )(-fy 1  )- R

(15)

Construction of Prediction Operations - Step I

Let us consider the model in (12) and one-step prediction based on observation

n-i
sequences yl , with n : 2<n<m+l. Given such an n, we consider the following

saddle point game, where F is as in (15):• n

Find a pair, (f ,gn), of an observation density function and an one-step

predictor, such that f*EFn, and:

YfcF n (f-) < e (f*,g*) < e (f* Vg (16)
n n-n- ngn - n  

In (16), the errors e n(f,g ) are as in (8), where the measure, p, has been

substituted by the corresponding density function, f.

Consider a pair, (f',gn), of an observation density and a prediction operation,
n

such that:

(f',g') : e (f,g') sup inf e (f,gn) (17)n n _n n n
fFg
n n

LLoW the results in [15] we then conclude that if the operation g=g(y n-l- is
n n 1

pointwise continuous and bounded, then (f',gn) = (f * )a t i sa.
nn and the pair is a unique

solution of the game in (16). We now present a theorem whose proof is in the Appendix.

Theorem 1

Let the nominal process be zero mean Gaussian. Let then P denote the

n-dimensional autocovariance matrix of this process, and let m (ynl) = T n-l

denote the optimal at the Gaussian nominal process one-step predictor, when the

observation sequence is n Let n:2<n<m+l. Then, the pair (f',gn) in (17) is as
1 -- n

follows:

7
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g(Y n-1 =M n-)i X {n-I T p-I n-i ) (18)
n 1 0 m 1 )" min(l, n 1  n- 1 n (18

f ,(yfl - I) =(_)f o ( y n- I)- max(l,Xnl y n-l rT -1 n-l 1/2

0'nn-l r
(19)

where X n is unique, and such that:

n-l n-i
f y )dyI =1 (20)

Since the operation in (18) is pointwise continuous and bounded, (f'gn)-(f'g
n n

and the pair is a unique solution of the game in (16).

When the nominal process is non Gaussian, the operation gn in (17) is

generally not pointwise continuous; thus, there is no guarantee then that it will

satisfy the game in (16), and it is generally qualitatively nonrobust. However,

drawing from linear prediction in the absence of outliers, we will adopt the

operations in Theorem 1, for non Gaussian nominal processes as well. Specifically:

Let the nominal process be stationary and zero mean, with n-dimensional

autocovariance matrix P . Let m (y )B y denote the optimal at the
n o 1 n- 1 1 %

nominal process linear one-step predictor when the observation sequence

n-iis y Let f denote densities of the Gaussian process whose power spectral

density is the same as that of the nominal process, and whose mean is zero.

Then, in the presence of the outlier model in (12), and for n 2<n<m+l, we

adopt the following one-step prediction operation: .

g*(yni) n- n-iT - -1/2
*n-1. (n-1 ( {"n-I'T - 1 n-l} - / '"

gn9 (y M moY )rin(l,X n tl nlYl
n 1o ni n-lI

T 1/2 -
n-1 -1 n-i P-1 n-I

An: n-i ) max(in {(Yl ) n-ll

We note that for C=0, the value of Xn is infinity and the operation g becomes
nn

identical to the optimal at the nominal linear one-step predictor. As C increases,

X decreases monotonically, becoming zero at E=I.
n

8
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Construction of Prediction Operations - Step 2

In this part, we are concerned with the construction of qualitatively robust

prediction operations, for large dimensionalities of observation sequences. We

point out that the operations in (21) are qualitatively robust for finite such

dimensionalities only. Indeed, they satisfy condition (A) in section II and are

bounded, but they do not satisfy condition (B). At the same time, the outlier

model in (12) does not allow for the formalization of a saddle point game for

arbitrary data dimensionalities, even when the nominal process is Gaussian. We

will thus adopt an adhoc approach.

n),}".
Let {a. denote the one-step Frediction coefficients of the nominal

process, when n observation data are available. That is, if m (n) denotes the

optimal at the nominal linear one-step predictor when the observation sequence is " •
n oq

Y then: *1

nn (i'i)

m (na(n).
0 ( ) . (22)

j= l -"

* seqene,{G, ne
Let g be as in (21). Then, we propose the following sequence, { of

step predictors:

* Yn-l) g* n-l

Gn 1 nl I for 2<n<m+l.

m* ( y)g* J-1
n 1(yl) = Y'a(n-l) gj+l 1 )+1(0 '1

j=l a.

(23)

n- 1 g*(i 0 -1
+ (m (in) ; for n>m+l

j =m+l m

where (0,y denotes the sequence Y'Ye+I'.... 'Ye+n' 0 P

We observe that the sequence (C ) in (23) degenerates to the sequence of
n

the optimal at the nominal linear predictors, when in the model in (12), c=0,

9

--V4V
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(design in the absence of outliers). In addition, using a similar proof as in

[151,we can easily show that the sequence {G*} is qualitatively robust,
n

(satisfying condition (B) in section II), if:

k

sup< (24)
k j:1

Asymptotic Performance at the Nominal Process

In this part, we focus on the asymptotic mean-squared error induced by

the sequence {G n} in (23), at the nominal process. In particular, we wish to

evaluate e(P ,G), where,

e(1oG = lim sup en(o,Gn) (25)
n-""°  n n %

Let e denote the asymptotic mean-squared error induced by the optimal at
0

the nominal linear mean-squared predictor, when the observations are generated OP

by the nominal process; that is, %

n~ 2
EAO - (a n)Y  2)

e lim sup E {[Xn+l a (26)
oo 0 j=l

Let us also define,

k

d=lim sup Fa Ia~j (27)
k- j=l

gm+l gm+l(

D E Ym- (28)

m

Then, we can express the following theorem, whose proof is in the Appendix.

Theorem 2

Let the nominal process be zero mean and stationary, with d <-,

lim sup m ak) 0, and E Then,
k-w j=l 0 0T

*(0G < 1 {X 2 }(29) "

1/2 e 1/2 * * (30)

00 M

____ ____ ____10



We note that D decreases to zero, when the parameter A in (21) goesm m

to infinity. Then, the asymptotic mean-squared etror, e(po, G ), becomes

identical to the optimal at the nominal linear mean-squared error, eo. Also,

D * is bounded from above by E /2{Y2 1, for every X value.
m10 m M

Outlier Resistance

In this part, we are focusing on the properties of the breakdown point and

the influence function induced by the one-step prediction sequence fG*} in (23).
n

We note that, as well known, the breakdown point of the optimal at the nominal

linear one-step prediction sequence is zero, and its influence function, 1(w), is

quadratic; thus unbounded, (see [18]). We now state the following theorem, whose

proof is in the Appendix.

Theorem3 

Let the nominal process be stationary and zero mean, with

k m

d lim sup E ja k)1<o, E iX2I<o , and lir sup Ejak)} =0 for every given
k- J k- j=l

finite m. Let X in (21) be bounded. Then, the sequence {G in (23) has strictly
m n

positive breakdown point, and bounded influence function.

IV. GAUSSIAN AUTOREGRESSIVE NOMINAL PROCESS

In this section, we consider a first-order autoregressive and Gaussian nominal

process, and we study then the performance of the sequence, {G}, in (23), in

detail. In particular, let the nominal process {X n,l<n<o} be such that:

Xn = aXn-l + Wn (31)

where a<0.5 and where the variables {W n  are i.i.d. and zero-mean,

unit-variance Gaussian. The process {X ,l<n<-} is then zero mean, and asymptotically

stationary with lim sup E {X2n 2(1-c%

n
-  

o 0

Considering the above nominal process, Theorem I applies, and the operations

tg = tg*} in (18) and (23) take here the followinp asymptotic form:

.
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For j- gm *(yj 1  ) ay .min(l,1{Y2 _ + (1-C&) (yi-aY )2i )
m+1~~~i -m+2i o+

i-j -m-2 (32)

; where,

m m 1

X m -ax(l,x - (y12 +(1a2) 'E (y _0 i )(2r) 2 (1-a 2) 2

m i=2

"exp{- 12 [y2 +( a 2 ()dy-(lE)-1

2 (1-a 2) 1 YiY=2
2(1-ci ~ 1-2

(33)

For n-, G (y n-l) * , n-l (34) 4

From the above expressions, we easily find the following expressions,

where D(x) and O(x) denote respectively the distribution and the density "

functions of the zero-mean and unit-variance Gaussian variable, at the point x.

For j-, g (y - min(l, ) (35)

X1:2( I + 2 1 ) = (36)

A 1 /

2 2/2For j- , g 3 (y j ly a) inyj _(1, _yj..+(1 M - ) (37)

A-X __j.2 __ 1c2: 20( )-1 + 2 )- I ) (I- ) - I  (38) '.
2 ( 4l2 42)

The funiti-ns that determine the X1 and X2 values, in (36) and (38)

respectively, are both motonically decreasing with increasing X; from - to 1;

thus, for c<l, both X and X are unique. In addition, it can be easily seen that
1 2

A2>Ai •

2 1

We will study the operations in (34), for m=l and m=2. That is, we will

analyze the operations in (35) and (37), in terms of performance at the nominal,

breakdown point, and influence function.

12 V-1

'~.~~'h':4'~A.~ - .~ 'CT Y ~ '*4** * * C~C - . ~ C.. C '~j %



13

Case m-1

Then, from (35) and (34) and for XI as in (36), we obtain:

For n-, G n(Y ) = - 1n'n(, (39)

ln-l

Then, we easily find:

e(joG )-lim sup (E (X - 2E {X G (Y n-) + E (*G (Y -)] )

0-D Von j 0 nn0 n

l o IF 2o

-22t X7i~ a1 * J1 (40)

X22 {2-2 + €(,_2) -1 2)f _ )-I]

I ,(w) 2 2-min(l, -i-) [2( 12 1G w2-2) i 1 + ( -c c 2U,2$(1 . -l¢(, -")

2 2 2) + 2
2(1-a )X 1 1-t(xlA 1  ' + I2 -__

(41)
* 2 2 2 2 2e , = 1-(1-t ) (1 - ) 1 +  [2 (A1 c,.1

2 2)] + 2 '2 Xl (Xl "2)} ,

1-
(1-ct 2 )AX1[1-0(A 1  .7)'+2 -2\() f-I 2

(42)

where the expressions in (40), (41), and (42) provide respectively, the

mean-squared error at the nominal, the influence function, and the breakdown

point induced by the operation in (39), when the nominal process is as in (31).

The mean-squared error e(poG ) in (40), and the breakdown point e , in (42)

are both convex functions of XV In Figure 1, we plot them against )I In Figure

2, we plot the influence function I *(w) against iwj.

Case m-2

Then, from (37) and (34), and for 2 as in (3M), we obt ai n:
211

n-2 -I/ ,
For n-, G (y =cy y - )y -n 1 -1'2 n- 2 -i n- 2 )

(43)

13
I.. -* * 4V ...... ::
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Then, we find,

e(.)P - (1-a) (1- 21 oL2  2 [l 2

2 2 2

I,(w) -a w2.min(1, X2)+

G ,2 w2 [1+(l-a 2 )(1-a) 2

-1 A2  A2  A2  d!

+ .[27ra (1.ca) [l-1( _7 +V(O) - V

(45)

* 2 2 2 2(- -1 )2 A2 2e , 1-a x2{ x2 + ,[ Ma  2)G,2 11-c2 12 )

+ 2 22 [(21-"a + (1-a)2 1[J(O) - 2 1

(46)

In (45) and (46), size-two blocks of independent outlier vectors have been

considered, as in (12) with m-2. As functions of A 2 the mean-squared error

in (44) and the breakdown point in (46) behave respectively as those in Figure

1. Also, the influence function in (45) behaves similirly to that in Figure 2.

We note, that in the m-l case, the found breakdown point and influence function

are identical when size t blocks of outlier vectors are considered, and for

every b>.

Comparisons

Let us compare the operations derived for cases m=1 ,nd rn=2. Since the

frequency of the outliers in a given system jre it most .i)I~rxi l1t. known, %

the thresholds A1 and 2 in the above optration-; .iro. st.. d h 'lv. let us

thus select:

14

... ,,_ L",-" ." ." ."" "" ".. -. . .. "° ." ."","". "'-"."". .'" .' " ".'.' -".',, _. .. .. .U ;' " " ," " ,'.""Z" " . " " i'" . "" ' 
"
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Cly 1  in(l, ) ; for the mrl case

n- n-i

For n-., Gy n- (47)

Y n-1 min(l, 2 1/2 " ; for the m=2 case

2 Yn-2

Let us denote by I (w); m-1,2, the influence functions induced by the
m

operations in (47), for the cases m=l and m=2 respectively, when the nominal

process is as in (31). Let us denote by e ; m=1,2, the corresponding mean-

squared errors induced by the operations at the nominal in (31) process. Then, .

modifying the tnresholds appropriately in expressions (40), (41), (44), and (45),

we find after some tedious but straight forward manipulations: p.,

2 21e-e= a2(i- ) F(X) (48)

l(w) 12 (w) =_22(1- ) F(X) +

2 2 2+ w {min(I, 2 2 min(l, -i 2 w2)
(1l-c2)w [f(l-a 2 ) + (1-ct)

(49)

where,

F(X) [2A2  2 X + 21[1-4(X)1 - [2X + ]@J7PP(X) (50) '-

The function F(X) is nonpositive for all positive A values, while the

expression in the brackets of (49) is nonnegative for all X and w. Thus, "a'-,

e2 > e and 1 (w) > 12 (w) ; Vw, VA (51)

The inequalities in (51) express a tradeoff. Indeed, the operation for

m-2 in (47) provides uniformly better protection against outliers than the

operation for me-l, but the former induces a uniformly higher mean-squared error

at the nominal process than the latter does. Cenerally, given c.ach of the operations

1 5 --
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separately, as A increases, the mean-squared error at the nominal process decreases,

but the breakdown point decreases as well, and the influence function increases

uniformly. Thus, the selection of one operation among those in (47) and the

choice of the threshold A in it, depend on the desired tradeoff between performance

at the nominal and protection against outliers.

V. CONCLUSIONS

We derived a class of outlier resistant prediction operations. Those operations

are nonlinear functions of the observed data sequences and combine good performance

in the absence of outliers with protection against data outliers. The class in-

volves a threshold parameter and a data block size used as a basis in the construc-

tion. The two parameters are involved in a performance at the nominal process

versus outlier resistance tradeoff. The selection of the threshold parameter is 'i

also based on a similar tradeoff. The operations in our class are qualitatively

robust.

% ',%

.'.V
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Figure 1

Autoregressive Gaussian Nominal Process and m=l -
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APPENDIX

Proof of Theorem 1

We easily find that,

inf e (fg E {X )m ( yn-1 dy-
g n n 1i n 1 y 0[o Yo )] 1

So, 10
.0

sup inf en(f,g) corresponds to:
fcF g n n

n n 5%.1

C -1,nl - n-i 2 n-i
inf f- 1Y (y )[fo(Yl I)mo( y l 2 dYnl (A.1)

fEF JRn-i

Applying calculus of variation on (A.1), subject to the constraintsJ n-I n-i n-1 n-i n-i Rn-I
f(y 1 )dyl = 1 and f(yl ) - (1-C) fo(y ) > 0; . y ER , we find

Rn-1

the solution in the Theorem.

Proof of Theorem 2

Expression (29) is obvious, and is attained with equality iff X =0 in (21).
n

Regarding expression (30). applying the Schwartz inequality and using (22), we

.N

obtain, .--: .

2 2e(V°Gn) = E ([X + -i2 m-i)-(Yni 21 n ) 1 o n

0

+ 2 E o{X -m (Y n-1)Mo(Yn-1 C (Y n- 2

n 0 0

0

* where,

,,9

pp..

,,,, . .. , ", " , "J "- .: , ''--- . - ' : '- .-'- -, i.'o . . . -.€ , , "€" ' "-" "%"% "". "''"."" " '".2-"- -. " "% .1-8" ;
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JE jX m Y nI I[M yn-i )-* (n-i )}

nb ol -01
0 0

(A. 3)
From (A.2) and (A.3).te obtain:

1/2(V 1/2 -i 2 1/2 n-i l 2 ..-

le iG) E~ {[X -m(Y'- < ]<E f[ (Y1 )-GY )
0j 10

(A.4)&

Also,

2 eaai

1/([ g(+(Yng-+ * ~ yj-i
Iafl)E/2 [o 1 )-+

n-i (n1 j (i S * 2OYi1

1+ [.i aji -Pinoom~

J -1 i n

[- j4- W 1- *(n-i)-1

(-)1/2 ni 21( 1/ (A.5)Y )Eajsu E, 0I~i (Y [y } ae (A.)

n-1~ (Yi -g(Oy j 2I
(n-1 E /2 y 9M+ I +1 n~l -M+

E Po (M) -.-.- ',-.-.-*%.----S ~ ~ 5~*Lh



a. 3

Applying (A.5) to (A.4), and taking limits, we obtain (30).

Proof of Theorem 3

Let us define,

a = li sup a(k)
k- i

Then, we easily find,

e (IwG )-e(poIG)

I ,(w) lira <G -0 C -

< - er, G + Eo(X 2 + 2A m -2Ea2

-- ~ m

+-e 8G)E xa+a m E a2 aaj2 r 4 12 -

m i+j m i+j

22
< 4 "o (d) + E {X2 } + e(P oG) <00,Lam m) Po .

since e(piG) is bounded via Theorem 2.

It can be easily found that e(11,,0G) equals e(po, ) at E=0, and that it is

monotonically increasing with increasing C. In addition, e(PoC, )<E {X2 }. Thus,
* 0

the breakdown point E , is positive.

G

2.

N' "

° N'"

A..;?
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